Reality is that LLMs are not AGI -- they're a big curve fit to a very large dataset. They work via memorization and interpolation. But that interpolative curve can be tremendously useful, if you want to automate a known task that's a match for its training data distribution.
Memorization works, as long as you don't need to adapt to novelty. You don't need intelligence to achieve usefulness across a set of known, fixed scenarios.
Recent articles
- Reverse engineering Codex CLI to get GPT-5-Codex-Mini to draw me a pelican - 9th November 2025
- Video + notes on upgrading a Datasette plugin for the latest 1.0 alpha, with help from uv and OpenAI Codex CLI - 6th November 2025
- Code research projects with async coding agents like Claude Code and Codex - 6th November 2025