Roaming RAG – make the model find the answers (via) Neat new RAG technique (with a snappy name) from John Berryman:
The big idea of Roaming RAG is to craft a simple LLM application so that the LLM assistant is able to read a hierarchical outline of a document, and then rummage though the document (by opening sections) until it finds and answer to the question at hand. Since Roaming RAG directly navigates the text of the document, there is no need to set up retrieval infrastructure, and fewer moving parts means less things you can screw up!
John includes an example which works by collapsing a Markdown document down to just the headings, each with an instruction comment that says <!-- Section collapsed - expand with expand_section("9db61152") -->
.
An expand_section()
tool is then provided with the following tool description:
Expand a section of the markdown document to reveal its contents.
- Expand the most specific (lowest-level) relevant section first
- Multiple sections can be expanded in parallel
- You can expand any section regardless of parent section state (e.g. parent sections do not need to be expanded to view subsection content)
I've explored both vector search and full-text search RAG in the past, but this is the first convincing sounding technique I've seen that skips search entirely and instead leans into allowing the model to directly navigate large documents via their headings.
Recent articles
- My AI/LLM predictions for the next 1, 3 and 6 years, for Oxide and Friends - 10th January 2025
- Weeknotes: Starting 2025 a little slow - 4th January 2025
- I still don't think companies serve you ads based on spying through your microphone - 2nd January 2025