We introduce phi-3-mini, a 3.8 billion parameter language model trained on 3.3 trillion tokens, whose overall performance, as measured by both academic benchmarks and internal testing, rivals that of models such as Mixtral 8x7B and GPT-3.5 (e.g., phi-3-mini achieves 69% on MMLU and 8.38 on MT-bench), despite being small enough to be deployed on a phone.
Recent articles
- Calling LLMs from client-side JavaScript, converting PDFs to HTML + weeknotes - 6th September 2024
- Building a tool showing how Gemini Pro can return bounding boxes for objects in images - 26th August 2024
- Claude's API now supports CORS requests, enabling client-side applications - 23rd August 2024