We introduce phi-3-mini, a 3.8 billion parameter language model trained on 3.3 trillion tokens, whose overall performance, as measured by both academic benchmarks and internal testing, rivals that of models such as Mixtral 8x7B and GPT-3.5 (e.g., phi-3-mini achieves 69% on MMLU and 8.38 on MT-bench), despite being small enough to be deployed on a phone.
Recent articles
- Claude can write complete Datasette plugins now - 8th October 2025
- Vibe engineering - 7th October 2025
- OpenAI DevDay 2025 live blog - 6th October 2025