We show for the first time that large-scale generative pretrained transformer (GPT) family models can be pruned to at least 50% sparsity in one-shot, without any retraining, at minimal loss of accuracy. [...] We can execute SparseGPT on the largest available open-source models, OPT-175B and BLOOM-176B, in under 4.5 hours, and can reach 60% unstructured sparsity with negligible increase in perplexity: remarkably, more than 100 billion weights from these models can be ignored at inference time.
— SparseGPT, by Elias Frantar and Dan Alistarh
Recent articles
- URL-addressable Pyodide Python environments - 13th February 2025
- Using pip to install a Large Language Model that's under 100MB - 7th February 2025
- OpenAI o3-mini, now available in LLM - 31st January 2025