You can think of the attention mechanism as a matchmaking service for words. Each word makes a checklist (called a query vector) describing the characteristics of words it is looking for. Each word also makes a checklist (called a key vector) describing its own characteristics. The network compares each key vector to each query vector (by computing a dot product) to find the words that are the best match. Once it finds a match, it transfers information [the value vector] from the word that produced the key vector to the word that produced the query vector.
Recent articles
- Gemini 2.0 Flash: An outstanding multi-modal LLM with a sci-fi streaming mode - 11th December 2024
- ChatGPT Canvas can make API requests now, but it's complicated - 10th December 2024
- I can now run a GPT-4 class model on my laptop - 9th December 2024