Petals (via) The challenge with large language models in the same scale ballpark as GPT-3 is that they’re large—really large. Far too big to run on a single machine at home. Petals is a fascinating attempt to address that problem: it works a little bit like BitTorrent, in that each user of Petal runs a subset of the overall language model on their machine and participates in a larger network to run inference across potentially hundreds of distributed GPUs. I tried it just now in Google Colab and it worked exactly as advertised, after downloading an 8GB subset of the 352GB BLOOM-176B model.
Recent articles
- Weeknotes: Parquet in Datasette Lite, various talks, more LLM hacking - 4th June 2023
- It's infuriatingly hard to understand how closed models train on their input - 4th June 2023
- ChatGPT should include inline tips - 30th May 2023
- Lawyer cites fake cases invented by ChatGPT, judge is not amused - 27th May 2023
- llm, ttok and strip-tags - CLI tools for working with ChatGPT and other LLMs - 18th May 2023
- Delimiters won't save you from prompt injection - 11th May 2023