More capable models can better recognize the specific circumstances under which they are trained. Because of this, they are more likely to learn to act as expected in precisely those circumstances while behaving competently but unexpectedly in others. This can surface in the form of problems that Perez et al. (2022) call sycophancy, where a model answers subjective questions in a way that flatters their user’s stated beliefs, and sandbagging, where models are more likely to endorse common misconceptions when their user appears to be less educated.
Recent articles
- Vibe engineering - 7th October 2025
- OpenAI DevDay 2025 live blog - 6th October 2025
- Embracing the parallel coding agent lifestyle - 5th October 2025