Simple, Fast, and Scalable Reverse Image Search Using Perceptual Hashes and DynamoDB. Christopher Bong provides a clear explanation of how perceptual hashes can be used to create a string representing the visual content of an image, such that similar images can be identified by calculating a hamming distance between those hashes. He then explains how they built a large-scale system for this at Canva on top of DynamoDB, by splitting those strings into smaller hash windows and using those for efficient bulk lookups of similar candidates.
Recent articles
- Putting Gemini 2.5 Pro through its paces - 25th March 2025
- New audio models from OpenAI, but how much can we rely on them? - 20th March 2025
- Calling a wrap on my weeknotes - 20th March 2025