Stable Diffusion 2.0 and the Importance of Negative Prompts for Good Results. Stable Diffusion 2.0 is out, and it’s a very different model from 1.4/1.5. It’s trained using a new text encoder (OpenCLIP, in place of OpenAI’s CLIP) which means a lot of the old tricks—notably using “Greg Rutkowski” to get high quality fantasy art—no longer work. What DOES work, incredibly well, is negative prompting—saying things like “cyberpunk forest by Salvador Dali” but negative on “trees, green”. Max Woolf explores negative prompting in depth in this article, including how to combine it with textual inversion.
Recent articles
- Weeknotes: datasette-enrichments, datasette-comments, sqlite-chronicle - 8th December 2023
- Datasette Enrichments: a new plugin framework for augmenting your data - 1st December 2023
- llamafile is the new best way to run a LLM on your own computer - 29th November 2023
- Prompt injection explained, November 2023 edition - 27th November 2023
- I'm on the Newsroom Robots podcast, with thoughts on the OpenAI board - 25th November 2023
- Weeknotes: DevDay, GitHub Universe, OpenAI chaos - 22nd November 2023