Deep learning isn’t hard anymore. This article does a great job of explaining how transfer learning is unlocking a new wave of innovation around deep learning. Previously if you wanted to train a model you needed vast amounts if data and thousands of dollars of compute time. Thanks to transfer learning you can now take an existing model (such as GPT2) and train something useful on top of it that’s specific to a new domain in just minutes it hours, with only a few hundred or a few thousand new labeled samples.
Recent articles
- LLM 0.22, the annotated release notes - 17th February 2025
- Run LLMs on macOS using llm-mlx and Apple's MLX framework - 15th February 2025
- URL-addressable Pyodide Python environments - 13th February 2025