Reinforcement Learning with Prediction-Based Rewards (via) Fascinating result: by teaching a reinforcement learning agent that plays video games to optimize for “unfamiliar states”—states where it cannot predict what will happen next—the agent does a much better job of playing some games. “... for the first time exceeds average human performance on Montezuma’s Revenge. RND achieves state-of-the-art performance, periodically finds all 24 rooms and solves the first level without using demonstrations or having access to the underlying state of the game.”
Recent articles
- Weeknotes: Embeddings, more embeddings and Datasette Cloud - 17th September 2023
- Build an image search engine with llm-clip, chat with models with llm chat - 12th September 2023
- LLM now provides tools for working with embeddings - 4th September 2023
- Datasette 1.0a4 and 1.0a5, plus weeknotes - 30th August 2023
- Making Large Language Models work for you - 27th August 2023
- Datasette Cloud, Datasette 1.0a3, llm-mlc and more - 16th August 2023