Reinforcement Learning with Prediction-Based Rewards (via) Fascinating result: by teaching a reinforcement learning agent that plays video games to optimize for “unfamiliar states”—states where it cannot predict what will happen next—the agent does a much better job of playing some games. “... for the first time exceeds average human performance on Montezuma’s Revenge. RND achieves state-of-the-art performance, periodically finds all 24 rooms and solves the first level without using demonstrations or having access to the underlying state of the game.”
Recent articles
- Recreating the Apollo AI adoption rate chart with GPT-5, Python and Pyodide - 9th September 2025
- GPT-5 Thinking in ChatGPT (aka Research Goblin) is shockingly good at search - 6th September 2025
- V&A East Storehouse and Operation Mincemeat in London - 27th August 2025